Bijective transformations of fuzzy implications - An algebraic perspective
نویسندگان
چکیده
Bijective transformations play an important role in generating fuzzy implications from fuzzy implications. In [Representations through a Monoid on the set of Fuzzy Implications, Fuzzy Sets and Systems, 247, 5167], Vemuri and Jayaram proposed a monoid structure on the set of fuzzy implications, which is denoted by I, and using the largest subgroup S of this monoid discussed some group actions on the set I. In this context, they obtained a bijective transformation which ultimately led to hitherto unknown representations of the Yager’s families of fuzzy implications, viz., f -, g-implications. This motivates us to consider whether the bijective transformations proposed by Baczyński & Drewniak and Jayaram & Mesiar, in different but purely analytic contexts, also possess any algebraic connotations. In this work, we show that these two bijective transformations can also be seen as being obtained from some group actions of S on I. Further, we consider the most general bijective transformation that generates fuzzy implications from fuzzy implications and show that it can also be obtained as a composition of group actions of S on I. Thus this work tries to position such bijective transformations from an algebraic perspective.
منابع مشابه
On orders induced by implications
In this paper, the orders induced by the residual implications obtained from uninorms are investigated. A necessary and sufficient condition is presented so that the ordinal sum of fuzzy implications satisfies the law of importation with a t-norm $T$. Some relationships between the orders induced by an ordinal sum implication and its summands are determined. The algebraic structures obtained fr...
متن کاملAN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC
In this paper we extend the notion of degrees of membership and non-membership of intuitionistic fuzzy sets to lattices and introduce a residuated lattice with appropriate operations to serve as semantics of intuitionistic fuzzy logic. It would be a step forward to find an algebraic counterpart for intuitionistic fuzzy logic. We give the main properties of the operations defined and prove som...
متن کاملAddendum to: "Infinite-dimensional versions of the primary, cyclic and Jordan decompositions", by M. Radjabalipour
In his paper mentioned in the title, which appears in the same issue of this journal, Mehdi Radjabalipour derives the cyclic decomposition of an algebraic linear transformation. A more general structure theory for linear transformations appears in Irving Kaplansky's lovely 1954 book on infinite abelian groups. We present a translation of Kaplansky's results for abelian groups into the terminolo...
متن کامل$omega$-Operads of coendomorphisms and fractal $omega$-operads for higher structures
In this article we introduce the notion of textit{Fractal $omega$-operad} emerging from a natural $omega$-operad associated to any coglobular object in the category of higher operads in Batanin's sense, which in fact is a coendomorphism $omega$-operads. We have in mind coglobular object of higher operads which algebras are kind of higher transformations. It follows that this natural $omeg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 291 شماره
صفحات -
تاریخ انتشار 2016